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Molecular genetics of tooth development
Marianna Bei1,2
Organogenesis depends upon a well-ordered series of

inductive events involving coordination of molecular pathways

that regulate the generation and patterning of specific cell

types. Key questions in organogenesis involve the identification

of the molecular mechanisms by which proteins interact to

organize distinct pattern formation and cell fate determination.

Tooth development is an excellent context for investigating this

complex problem because of the wealth of information

emerging from studies of model organisms and human

mutations. Since there are no obvious sources of stem cells in

adult human teeth, any attempt to create teeth de novo will

probably require the reprogramming of other cell types. Thus,

the fundamental understanding of the control mechanisms

responsible for normal tooth patterning in the embryo will help

us understand cell fate specificity and may provide valuable

information towards tooth organ regeneration.
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Introduction
Teeth, like all epithelial appendages, form via a sequen-

tial and reciprocal series of inductive signals transmitted

between the epithelium and neural crest derived

mesenchyme. Each tissue layer instructs the other to

differentiate in a precisely determined manner leading

to the formation of highly specialized structures, such as

incisors, canines, premolars and molars. Each of these

groups of teeth derives from different parts of the oral

epithelium and, depending on the species, teeth can be

formed from both endoderm and ectoderm or from ecto-

derm only [1,2��].

Morphologically, tooth development commences with a

thickening of the dental epithelium to form a structure

known as the dental lamina (Figure 1). Within this band
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of thickened epithelium the cells start to proliferate and

to invaginate in certain positions to form the placodes.

After this fundamental step in development, further

epithelial invagination and convolution form the bud,

cap and bell stages of tooth morphogenesis (Figure 1).

During these stages, the constant interplay of inductive

signals between the epithelium and mesenchyme (i)

gives rise to distinct anatomical and functional parts of

the tooth and (ii) mediates the differentiation of the

epithelium into enamel-secreting ameloblasts and that

of the mesenchyme into dentine-secreting odontoblasts

(Figure 1).

Animal and human studies that employ the tools of

contemporary molecular genetics have identified a num-

ber of genes that act at specific stages of tooth devel-

opment and regulate its patterning and differentiation

process (Figure 1; Tables 1 and 2; http://bite-it.helsin-

ki.fi). The purpose of this review is to discuss in general

terms some recent findings regarding genes and pathways

that control tooth development and to provide new

perspectives on the potential molecular mechanisms that

coordinate the process of odontogenesis and tooth regen-

eration.

Genes and pathways involved in regulation of
tooth development
Four major signaling pathways and their inhibitors

control tooth formation: a fine balance that determines

number and patterning

The conserved signaling pathways of BMP, FGF, SHH

and WNT ligands and their receptors constitute the key

pathways that are used reiteratively during tooth devel-

opment and mediate the epithelial–mesenchymal inter-

actions [3,4]. Over the past 15 years, studies using

transgenic animals provided functional data showing that,

in most cases, disruption of genes that are part of these

signaling pathways results in severe aberrations of tooth

development, such as complete tooth agenesis or arrest of

tooth development at early stages of development (the

lamina or bud stage of development), leading to anodon-

tia (lack of teeth) [reviewed in [5,6�,7,8�]; Tables 1 and 2

and Figure 1]. For example, conditional inactivation of

FGF8 in the dental epithelium results in arrest of tooth

development at the lamina stage. Overexpression of

BMPR1a in transgenic mice, or functional inactivation

of FGFR2b or SHH results in arrest of tooth development

at the bud stage [reviewed in [4,5]].

Recently, however, it was realized that the inhibitors of

these signaling pathways also contribute to control

tooth development. In most cases, when the inhibitors
www.sciencedirect.com
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Figure 1

.

or mediators of these signaling pathways are perturbed,

more teeth are formed with abnormal shape, ameloblast

or odontoblast differentation defects and reduced

matrix deposition [9–12,13�,14��]; reviewed in [8�],
Tables 1 and 2].

For example, loss of Ectodin leads to supernumerary teeth

through inhibition of BMP signaling [10]. Ectodysplasin

(Eda), a WNT signaling mediator, when overexpressed

can lead to supernumerary teeth [15,16]. Apc (Adenomatous
polyposis coli), another WNT modifier that organizes the

complex that degrades b-catenin, results in multiple

tooth buds when conditionally knocked out in the oral

epithelium,. Consistently, when b-catenin is overex-

pressed results in supernumerary teeth. These results

suggest that overexpression of the canonical WNT sig-

naling, either through loss of function of its inhibitors or

by overexpression of its effectors leads to supernumerary

teeth [11,17,18]. The importance of the tooth-inductive

potential of WNT signaling manipulation is further

demonstrated by the recent discovery that WNT pathway

activation, even postnatally, lead to formation of extra

teeth [14��]. Moreover, a member of the low-density

receptor-related protein family, Lrp4, that modulates

and integrates both the BMP and the canonical WNT

signalling by binding the secreted BMP antagonist

protein Ectodin, when mutated in mice results in super-

numerary incisors and molars as well as fused molars, a

phenotype identical to that of Ectodin mouse mutant [19].
www.sciencedirect.com
As in the case of BMP and WNT pathways, the mediators

and/or inhibitors of the SHH and FGF signaling lead to

supernumerary teeth, when mutated. Primary cilia med-

iate SHH signaling, since mutations in their protein

components affect SHH activity. Mice mutant for a cilia

intraflagellar transport (IFT) protein, IFT88/polaris,

result form ectopic teeth, through increase of Shh activity

in the toothless region of the embryonic jaw primordia,

the diastema region [20,21,22��]. Consistently, upregula-

tion of Shh activity in mice mutant for Gas1, a Shh protein

antagonist, results in ectopic diastema teeth [22��].
Finally, inactivation of either Sprouty2 (Spry2) and/or

Sprouty 4 (Spry4), the inhibitors of FGF signaling, leads

to supernumerary teeth in the diastema [12,13�].

These studies demonstrate that tooth formation is the

result of a tight control between networks of activators

and inhibitors, and that any modification of these net-

works leads to abnormalities in either number or pattern-

ing. Interestingly, the transcription factors that mediate

such signaling networks are indispensable for early and

late tooth development as well. Genetic experiments

where the function of transcription factors such as

Msx1, 2, Dlx1, 2, 5, Runx2, Pax9, Pitx2, Lef1, Gli1, 2, 3,

Lhx6, 7, 8, Prx1, 2 and others (http://bite-it.helsinki.fi) is

eliminated in mice or humans results in most cases in an

arrest of tooth development at the bud stage or before

during the lamina stage, leading to anodontia [Tables 1

and 2; [5,6�,8�]; Figure 1]. Exception to the rule is the case
Current Opinion in Genetics & Development 2009, 19:504–510
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Table 1

Abnormalities caused by mutations in transgenic mice affecting tooth formation.

Gene Mutation Tooth phenotype Reference

Msxl, Msx2 Double mutant Initiation stage arrest Bei and Maas (1998)

Dlx1, Dlx2 Double mutant Initiation stage arrest Thomas et al. (1997)

Fgf8 Fgf8flox Initiation stage arrest Trumpp et al. (1999)

Lhx6/Lhx7 Double mutant initiation stage arrest Grigoriou et al. (1998)

Pitx2 Null Initiation stage arrest Liu et al. (2003)

Gli2, Gli3 Double mutant Initiation stage arrest Hardcastle et al. (1998)

P63 Null Initiation stage arrest Yang et al. (1999)

Dkkl K14 transgenic Initiation stage arrest Andl et al. (2002)

Pax9 Null Bud stage arrest Peters et al. (1998)

Lef1 Null Bud stage arrest Van genderen et al. (1994)

Msx1 Null Bud stage arrest Satokata and Maas (1994)

Runx2 Null Bud stage arrest Aberg et al. (2004)

Barx1 Null Bud stage arrest Tucker et al. (1998)

Bmpr1a K14 transgenic Bud stage arrest Andl et al. (2004)

Fgfr2b Null Bud stage arrest De Moerlooze et al. (2000)

Shh K14 conditional KO Bud stage arrest Dassule et al. (2000)

Noggin K14 TG Bud stage arrest Plikus et al. (2005)

Activin bA Null Bud stage arrest, lack incisors

and mandibular molars

Matzuk et al. (1995)

Ctip2 Null Late bell stage defect Golonzhka et al. (2009)

Gli2 Null Abnormal maxillary incisor Hardcastle et al. (1998)

Gli3 Heterozygous Maxillary incisor development

arrested as a rudimentery

epithelium thickening

Hardcastle et al. (1998), Mo et al. (1997)

Eda Tabby encode eda Small enamel knot Tucker et al. (2000)

Edar Downless Absent enamel knot,

disorgonized enamel rope

Headon and Overbeek (1999)

Fgf10 Null Smaller tooth germ, cervical

loops of the incisors are

Harada et al. [34]

hypoplastic

Wnt/b catenin K14 conditional KO Misshappen tooth bud,

ectopic teeth

Liu et al. [18]

Ectodin/Sostdc1/wise Null Supernumerary teeth, enlarge

enamel knot, abnormal cusp

Kassai et al. [10]

Apc K-14Cre; Apccko/cko Supernumerary teeth Kuraguchi et al. [11]

Sp6 Null Supernumerary teeth Nakamura et al. [23]

Lrp4 Null Supernumerary teeth Johnson et al. (2005)

IFT88/polaris Null Supernumerary teeth Liu et al. (2005)

Gas1 Null Supernumerary teeth Ohazama et al. [22��]

Osr2 Null Supernumerary teeth Zhang et al. [24��]

Sprouty2, 4 Null Supernumerary teeth Klein et al. [12]
of Sp6, a zinc finger transcription factor known as Epfn.

Sp6 null mice develop numerous teeth, up to 50 incisors

and 8 molars, and that would be a surprise, if we did not

know that Sp6 functions through upregulation of Lef1, a

target, again of WNT signaling, whose activation leads to

extra teeth, as mentioned above [23].

Another transcription factor that leads to supernumerary

teeth upon mutation is odd-skipped related-2 (Osr2) [24��].
The study by Zhang et al. regarding the role of Osr2

transcription factor in tooth development stands alone,

since most of the mouse mutants that develop extra

buds/teeth do so in the toothless diastema region along

the already formed single row of teeth. By contrast, Osr2
deletion in mice leads to supernumerary teeth lingual to

their molars, thus forming a second row of molars, through

upregulation and expansion of the odontogenic field
Current Opinion in Genetics & Development 2009, 19:504–510
that is driven by the BMP4-Msx1-BMP4 pathway in the

mesenchyme [25]. Thus, normally, Osr2 suppresses this

pathway along the buccolingual axis to restrict molar de-

velopment to one tooth row in mice [24��].

Complex networks of signaling pathways and the

control of tooth diversity in evolution

The studies mentioned above indicate the importance of

keeping a fine balance between signaling ligands, their

receptors, inhibitors and transcription factors in regulating

all aspects of tooth development, including the pattern-

ing, the size, the number and the shape. Since pertur-

bations of these pathways lead to such fundamental

changes in patterning and number, one could hypothesize

that evolution favoured certain pathways versus others in

promoting certain changes in the dentition of vertebrate

species.
www.sciencedirect.com
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Table 2

Abnormalities caused by mutation in transgenic mice affecting tooth matrix deposition and root formation.

Gene Mutation Tooth phenotype Reference

Enamel defect

Msx2 Null Enamel hypoplasia Satokata et al. (2000)

Lama3 Null Enamel hypoplasia Ryan et al. (1999)

Sp3 Null Enamel hypoplasia Bowman et al. (2000)

Sp6 Null Enamel hypoplasia Nakamura et al. [23]

Smoothened K14 conditional KO Enamel hypoplasia Gritli-Linde et al. (2002)

Gdnf Null No enamel deVicente et al. (2002)

Periostin Null Incisor enamel defect Rios et al. (2005)

TGFB1 Dspp conditional KO Enamel hypoplasia Haruyama et al. (2006)

Eda K14 transgenic No enamel Mustonen et al. (2004)

Follistatin K14 transgenic No enamel Wang et al. [9]

Follistatin Null Ectopic enamel Wang et al. [9]

Wnt3 K14 transgenic No enamel Millar et al. (2003)

Amelx Null Enamel hypoplasia Gibson et al. (2001)

Ameloblastin Null No enamel Fukumoto et al. (2005)

Tbx1 Null Enamel free teeth Caton et al. (2009)

Enamelin Null Enamel hypoplasia/aplasia Hu et al. (2008)

Mmp20 Null Enamel hypoplasia Caterina et al. (2002)

Connexin 43 Dominant negative Enamel hypoplasia Dobrowolski et al. (2008)

Sprouty2, 4 Spry2+/�, Spry4�/� Ectopic enamel Klein et al. [13�]

Periostin Null Thinner enamel layer, Rios et al. (2005)

Noggin K14 transgenic Abnormal ameloblast Plikus et al. (2005)

Dentine defect

Dspp Null Dentinogenesis imperfecta Thyagarajan et al. (2001)

DMP1 Null Abnormal dentine tubule system Lu et al. (2007)

Msx2 Null Dentinogenesis imperfecta Aioub et al. (2007)

Sp6 Null Abnormal dentine stucture Nakamura et al. [23]

Sp3 Null Dentine defect Bowman et al. (2000)

Noggin K14 transgenic Abnormal dentinoblast Plikus et al. (2005)

Root defect

Msx2 Null Root malformation Satokata et al. 2000

Shh Ptcmes Shorter root Nakatomi et al. (2006)

Nfi-c/CTF Null Lacking root Steele-perkins et al. (2003)

Sp6 Null Defect in root formation Nakamura et al. [23]

Noggin K14 transgenic Failed to form multiple root Plikus et al. (2005)
For example, many non-mammalian vertebrates, such as

fish or reptiles, replace their teeth throughout their life,

have multi-rowed dentition and their teeth are all of

simple shape, while mammalian vertebrates develop

teeth in a single row, replace their teeth once or not at

all, and the teeth acquire different shapes and forms such

as incisors, canines, premolars and molars [1,26,27]. Mice

are examples of mammalian vertebrates that possess

molars and incisors only, they are monophyodonts (one

set of teeth) and they develop their teeth in a single raw.

The ancestors of mice, however, the Glires, a clade

including rodents and lagomorphs, possessed premolars

and canines similar to the dentition observed in non-

rodent species [28]. Interestingly, some rodents, such as

squirrels and guinea pigs, still have premolar teeth,

suggesting that the genetic information specifying pre-

molar and canine tooth shapes or tooth replacement

processes is still in place.

The phenotypes of numerous knock out and transgenic

mice that form either additional teeth in the diastema
www.sciencedirect.com
region, a region where normally premolars and canines

would have exist, or multiple de novo teeth, or multi-

rowed dentition just by perturbing a signaling pathway,

support such a hypothesis (Tables 1 and 2).

Stem cells in teeth and their potential to be
regenerated
Despite the progress made from genetic studies

described above, the processes involved in the formation

of extra teeth and tooth replacement are still not known.

Some studies suggest that Pitx2 and Bmp4 are key mol-

ecules associated with continuous tooth replacement in

fish [26]. Mammals, such as mice, that do not replace their

teeth, form de novo teeth when the WNT signaling is

overexpressed [11,14��,17,18]. Could any of these path-

ways be the key to regenerate teeth in humans? Can we

use the pathway network knowledge to drive stem cell

differentiation processes towards de novo tooth formation?

Currently, efforts towards that goal are concentrated in an

attempt to discover adult stem cells in human or mouse
Current Opinion in Genetics & Development 2009, 19:504–510
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teeth. Mesenchymal stem cells have been identified in

adult human teeth in the dental pulp (DPSCs) and in the

dental follicle (DFSCs) [29,30]. These cells have stem

cell properties, can be cultured as stem cells in vitro, can

form colonies and differentiate in vivo into odontoblasts,

cementoblasts and periodontal ligament cells [31]. Dental

epithelial cells, from the quiescent Epithelial Cell Rests

of Malassez (ERM)-the only dental epithelium remaining

after root formation, located within the periodontal liga-

ment (PDL)-were isolated from pigs and differentiated

into ameloblast-like cells producing enamel in vivo, when

co-seeded with dental pulp cells [32]. Using the continu-

ously growing incisor of the mouse as a model for the

study of adult epithelial stem cells, researchers have

shown that label-retaining cells were localized in the

epithelially derived cells of the cervical loop, and this

population of cells has been proposed to constitute the

mouse incisor stem cell niche [33]. Further studies indi-

cated that members of the FGF family of ligands, namely

FGF3 and FGF10, derived from mesenchyme, promote

the proliferation and survival of the incisor epithelial stem

cell niche [33,34,35��]. Consistently, FGF10 is down-

regulated in teeth that do not grow continuously, such

as the mouse molar, while the addition of FGF10 to

cultured mouse molars promotes the maintenance of their

cervical loops [36].

Although these studies have provided some insight on

potential sources of tooth stem cells in pigs and mice, the

fact remains that adult human teeth do not grow con-

tinuously and no human stem cell niches have yet been

identified. The epithelial cell rests of Malassez (the only

remaining epithelial cells after the tooth completes its

development), the dental pulp and dental follicle stem

cells that have been isolated from humans are promising,

but their stemness is not yet well established and, more

importantly, there is no evidence yet that they are capable

to direct tooth morphogenesis.

Future directions: reprogramming of adult
differentiated cells and the search for the
unique molecular identity of teeth
Recent advances in adult cell reprogramming through the

creation of induced pluripotent stem (iPS) cell lines from

adult differentiated cells offer the possibility to produce

pluripotent stem cells from patient’s own tissue [37�,38].

iPS cells are created by forced expression of defined

transcription factors as Oct4, Sox2, cmyc and Klf4, which

have been shown to induce pluripotency in somatic fibro-

blast cells [39��]. In another study, iPS cells were generated

from human fibroblasts using Oct4, Sox2, Nanog and Lin28

[40]. Although the four reprogramming factors were differ-

ent in these two studies, all of them were transferred into

the cells by means of retrovirus gene transfer, which holds

some risk to cause insertion mutations. In addition, since

some of the reprogramming factors are oncogenes as well,

the risk of tumour induction is another potential limitation
Current Opinion in Genetics & Development 2009, 19:504–510
to be considered. A recent breakthrough study by the group

of Doug Melton succeeded to directly reprogram pancrea-

tic exocrine cells to insulin producing beta cells [41��]. This

method is more advanced to the reprogramming of any

adult differentiated cells to iPS cells, because the pancrea-

tic exocrine cells share a common genomic and epigenomic

identity with those of insulin producing beta cells. The

latter approaches could be promising and suggest that

tooth-specific cell types, such as ameloblasts or dental

follicle cells, with matrix producing capability could be

produced through reprogramming of adult cell types.

Whether reprogramming of adult cells to iPS and then

programming of iPS can be used to generate, instead of

specific cell types, a rather complex three-dimensional

organ like the tooth, is not yet known.

The tooth is a complex organ and its development a

process controlled by a sequence of cellular and molecular

networks that act at particular places and times to guide

pluripotent cells to restricted dental cell fates. The

mechanisms that control and determine the history of

the cells so that the differentiation program is properly

executed during embryonic development are not known.

Despite the fact that genetics and epistasis analysis have

led to the discovery of numerous genes and pathways

involved during different stages of tooth development,

the same genes are required for the development of other

tissues, especially that of other ectodermal organs such as

hairs, nails and glands [Figure 1 and Tables 1 and 2]. In

addition, perturbations of these genes affect not only

tooth development but, in most cases, the development

of other ectodermal organs, thus leaving open the obvious

question of cell fate specificity [8�,42].

What it is known, however, is that transcription factors

control cell fate through a selective regulation of target

genes, and that the target gene specificity is achieved

through context-dependent selective protein interactions.

Recent studies suggest that in early tooth morphogenesis, a

network of transcription factors operate in the dental

mesenchyme to regulate a specific transcriptional output

and that their combinatorial action, along with their target

specificity is further modified by epigenetic mechanisms,

such as sumoylation (M Bei, unpublished). The need of

such a comprehensive analysis at the molecular level, along

with extensive whole-genome data sets (including ChIP-

chip and ChIP-Seq of multiple transcription factors), maps

of epigenetic states, expression profiling of genetically

manipulated cells, would help determine the molecular

identity of the tooth and permit controlling of the iPS

programming towards the generation of de novo teeth.
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